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SLURRY FUELS IN SMALL-SCATE AFTERBURNER

By Lecnard K. Tower

SUMMARY

Both JP-3 fuel and a slurry of 60 percent powdered magnesium in
JP-3 Puel were evaluated in a small-scale afterburner in the presence of
large qusntities of water vapor. From data obtained with the small-
scale afterburner, the static sea-level performance was computed for
. turbojet engines sugmented by combined water injection and magnesium-
) slurry afterburning.

« Combustion of 60-percent-magnesium slurry in the small-scale after-
burner was stable to the highest water-air ratio investigated, 0.18.
The JP-3 fuel would not burn beyond a water-air ratio of 0.08.

The following table reveals that total temperature, combustion
efficiency, and air specific impulse were improved when the magnesium
slurry rather than JP-3 fuel alone was used in the small-scale after-
burner both with and without water vapor:

Fuel | Water-| Afterburner | Afterburner| Air
air total conbustion specific
ratio | temperaturel efficiencyt impulsel
(°R) (sec)
JP-3 o 3650 0.78 157
.07 2800 .56 150
Slurry | O 4760 0.87 177
.12 3720 .87 182

lafterburner equivalence ratio of 1.0.
These improvements were at the expense of increased liquid consumption.

By means of these total-temperature data, turbojet static sea-level
performance with combined water injection and afterburning was computed
for two engines. One of the engines was assumed to make ideal use of
injected water. In the other engine, the effectiveness of water was
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assumed to be that experienced in previous experiments. Results for an
afterburner equivalence ratio of 1.0 were as follows:

Type of Afterburner | No water injection Water inJection
water fuel Augmented | Augmented | Maximum Augmented.

injection thrust liquid augmented | 1iquid

ratio ratio thrust ratio
reatio

Ideal JP-3 1.47 4.0 1.81 6.8

Slurry 1.75 6.9 2.15 9.8

Experi- JP-3 1.43 4.0 1.58 7.0

mental Slurry 1.67 6.9 2.00 13.6

From these results it may be predicted that afterburning with 60-percent-
magnesium slurry in place of JP-3 fuel may shorten the take-off distance
of some aircraft 17 to 24 percent.

INTRODUCTION

Physical and thermal properties of high-energy fuels, such as high
heating value per unit volume, per unit fuel weight, or per unit alr
weight, offer potential increases in range or thrust of asircraft (refer-
ence 1). Fuel slurries, or suspensions of powdered metal and hydrocarbon
fuels, have been proposed as a means of simplifying the storage and hand-
ling problems presented by the metallic high-energy fuels.

Small-scale afterburner tests, showing the superior thrust-producing
capaclty of magnesium-hydrocerbon slurries as compared with hydrocarbons
alone (reference 2), meke the application of magnesium slurries to air-.
craft afterburners appear promising. Reference 3 concludes that these
slurry fuels may, with sufficient research, be given satisfactory proper-
ties such as physlcal stability by the use of additives.

The experiments conducted on the small-scale afterburner (refer-
ence 2) indicate that the reactivity of masgnesium slurries with air
exceeds that of hydrocarbon fuels slone. Under comparable conditions
of burner-lnlet velocity and pressure, a narrower operating region of
equivalence ratio was found for hydrocarbon fuels than for magnesium
slurries. A simplified flame-holder and injection-nozzle configuration,
used successfully with magnesium slurry, would not secure stable combus-
tion with the hydrocarbon fuel aslone. Reference 4 substantiates the
high reactivity of megnesium slurries as compared with hydrocarbons.

8952 .
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Analyses of combustion products taken from a smell combustor burning
slurries of magnesium powder in hydrocarbons reveal that when slurry
fuel-gir mixture is rich, the magnesium combines with the available
oxygen at the expense of the hydrocarbon present.

Because of their high reactivity and potential performance
increases, magnesium-hydrocerbon slurries warrant consideration in
applications where the use of hydrocarbon fuels resulis in combustion
Instability or inefficlency or in insufficient energy release. One
such possible epplication is In the afterburner of a turbojet engine
edditionally augmented by compressor or combustion-chamber coolant injec-
tion. A theoretical analysis 1n reference 5 predicts a thrust sugmenta-
tion with a combination of hydrocarbon afterburning and water injection
which was not realized experimentally by the use of water or water-
alcohol mixtures (reference 6). Among the causes for this lack of agree-
ment are Ineffective vaporization of the coolant, the detrimental effect
of the coolant upon engine component performence, and the decrease in
afterburner combustion efficiency and stability as increasing quantities
of coolants conteining water are injected.

Magnesium slurries may be more satisfactory than hydrocarbons as
afterburner fuels in such a system involving concurrent water or water-
alcohol injection because of the high reactivity of magnesium with both
water (& constituent of some coolants) and air.

An investigation was conducted at the NACA ILewis laboratory to
determine in the presence of water vapor the combustion properties of
slurries containing 60 percent atomlzed magnesium powder and 40 percent
hydrocarbon by welght. The hydrocarbon was a speclally blended JP-3 fuel
of low aromatic content meeting MIL-F-5624 specifications. Date reported
herein were obtgined with a 6-inch smell-scale afterburner.

AFPARATUS AND PROCEDURE

The small-scale afterburner installation, very similar to that
described in reference 3, is shown in figure 1. It consists essentially
of an asir-supply line, a jet-engine can-type combustor (hereafter
referred to as the primsry combustor) in which propane was burned to
similate turbine-outlet temperature, a length of straight duct at the
downstream end of which the afterburner-inlet instrumentation was
located, and an afterburner. The reaction of the exhaust jet against
a barrel-type thrust target, which turned the exhsust through 90°, was
used to measure thrust. The pressure in the thrust target was slightly
in excess of atmospheric. The slurry fuel system, the same as that
described in reference 3, is depicted in figure 2.
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Afterburner configuration and fuel sprays. - The air-atomizing
spray bar and the afterburner configuration used in obtaining data with
the JP-3 fuel are shown in figure 3. The comblnation represents a
satisfactory combustor configuration for JP-3 fuel, which was evolved
from a few trials (reference 3).

The afterburner configuration, a single water-cooled injection
nozzle, and the nozzle manifold used with the 60-percent-magnesium
slurry are shown in figure 4. This conflguration was found in refer-
ence 3 to provide for good combustlion of the slurry fuel without burning
out the flame holder. Alternate waell injection nozzles were manifolded
together, forming two groups of four nozzles each. At the lower fuel
flow rates, one menlfold was used, permitting higher injection pressures
than could be obtained with & single fuel system.

Water-injection system. - Water was injected into the duct at the
downstresm end of the primary combustor through four atomizing fuel

nozzles manifolded in groups of two as shown In figure 1. About 81 Inches

of duct were available for veporization bebtween the point of injection
end the statlion where afterburner-inlet temperature was measured. A heat
balance, based upon the primary-combustor heat input end the enthalpy
rise required for complete vaporization of the water, indicated that the
smount of water evaporated at the afterburner inlet varied as follows:

Weater-alr | Water
ratio vaporized
(percent)

0.02 65

.03 73

.06 85

.09 89

The effect of the water upon performance is shown herein to be most
eritical beyond 0.05 water-air ratio, where 80 percent or more of the
water was known to be veporized at the burner inlet. Wet and dry bulb
thermocouples indicated that the moisture content of the combustlon air
prior to the point of water Injection was negligible. . .

Fuel. - The fuels evaluated were a hydrocarbon reference fuel and a
blend containing 60 percent atomized magnesium and 40 percent hydrocarbon
reference fuel. The hydrocarbon reference fuel met MIL-F-5624 specifica-
tions, as shown in teble I, except for a minor discrepancy in vapor
pressure. It was prepared to have an aromatic content of less thean
10 percent. The characteristics of the magnesium powder used in the
slurry blend are listed in teble II.

8952
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Operating procedure, - The slurry fuel flow was computed from the
calibration obtained for the hydrocarbon by the relation

Wb, slurry _ Pslurry
¥b,JP-3 PIp-3

(Symbols are defined in appendix A.) This procedure is verified by
figure 7 of reference 3, where data for slurries containing several con-
centrations of magnesium are reduced to a single relation of orifice
differential pressure against weight flow by the correction factor shown.

During all runs & combustion air flow of nearly 2.50 pounds per
second and an afterburner-inlet temperature of 1660° R were maintained.
The afterburner-inlet velocity ranged hetween 300 and 450 feet per second,
primarily because of a variation in afterburner pressure between 16 and
24 pounds per square inch. About 2 pounds per second of cooling air was
passed through the burner cooling jacket to limit maximum afterburner
wall temperature to 1100° F. Because experience showed that the presence
of water vapor made the ignition of JP-3 fuel difficult, the afterburner
was ignited by momentary enrichment of the propane flow to the primary
combustor before water injection was begun. The ignition of magnesium
slurry in the presence of water vapor was not attempted. The afterburner
fuel flow was held approximastely constant and the quantity of water
injected was progressively increased until either combustion instability
or water-pump capacity was reached. Limited fuel quantity did not allow
the operating time necessary for the precise setting of either water flow
or afterburner fuel flow. This limitation necessitated the use of inter-
polation in reducing the data to fixed fuel-air ratios or water-air
retios. TUnless blow-out occurred, the afterburner operated continuously
throughout a series of runs. Between the adjustment of conditions for
every run and the recording of data, about 30 seconds was allowed to
establish thermal equilibrium; 30 seconds was also consumed In reading
and recording the data. Thrust and fuel flow were recorded every
2 seconds during the data-taking interval.

RESULTS AND DISCUSSION
Performance of JP-3 Fuel and Magnesium Slurry in Bmell-
Scale Afterburner
A tebulation of performance data for runs with the small-scale after-

burner is presented in table ITI. Some of the more important data have
been plotted for the purpose of discussion.

i



NACA RM ESZH25

Effect of water injection on primsry-combustor and afterburner fuel-
air ratios. - As water-air ratio was increased, propane flow to the
primary combustor was also increased to meintain afterburner-inlet tem-
perature at 1660° R (fig. 5). The afterburner fuel to total-air ratio
required for stolchiometric utilization of the remaining oxygen then
decreased as shown. The afterburner equivalence ratio was thus 1.0.

Effect of water injection on the stebility limits of JP-3 fuel and
60-percent-magnesium slurry. - The afterburner equivalence ratio and
corresponding water-air ratio for each of the rumns with JP-3 fuel and
with 60-percent-magnesiuwm slurry are shown in figure 6. Stable combustion
was obtained with JP-3 fuel only within the zone enclosed by the hatched
line. As water-air ratio was increased, stable operation with JP-3 fuel
was obtainable over a decreasing band of equlvalence ratios. Beyond a
water-air ratio of 0.08, flame blow-out occurred at all equivalence
ratios.

The stability limite are also shown from reference 6 for a full-
gscale engilne with JP-3 fuel in an afterburner and coolent injection in
the compressor. The compressor coolent was a mixture of 75 percent
water and 25 percent alcchol by weight. The coolant containing 75 per-
cent water was detrimentsl to the combustion stability of the full-scale
afterburner, as was water alone 1n the small-scale afterburner.

In none of the runs with 60-percent-magnesium slurry was combustion
instability or blow-out encountered. The capacity of the water-pumping
system limited the water-air ratio obtainable with 60-percent-magnesium
slurry to 0.18, as shown in figure 6. With the slurry, combustion in
the smgll-scale burner was stable at a water-alr ratio of more than

Zi-times +that obtainsble with JP-3 fuel.

The combustion stability of the magnesium slurry in the presence of
water is presumsbly due to the strong chemical reactivity of magnesium
with water. The reaction of magnesium with water 1s well esteblished
and is cited in literature such as reference 7. Examination of the free
energles listed in reference 8 for the reaction of water with magnesium
and the reaction of oxygen with magnesium indicates that magnesium exhibits
a strong chemical affinity for both the water and the oxygen contalned in
the combustlon air. Little specific information on the kinetic rate of
the reaction of powdered magnesium with water and air is available. How-
ever, the oxidation of magnesium powder in an air stream heated to 470° C,
slightly below the ignition temperature, has been investigated (refer-
ence 9). Air containing a moisture concentration equivalent to the normal
atmosphere gave an oxidation rate 3 times as great as dry alr.
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Effect of water injection on total temperatures and combustion
efficiencies in the smell-scele afterburner. - Totel temperatures in the
small-scale afterburner were computed at an equivalence ratio of 1.0
for both JP-3 fuel and 60-percent-magnesium slurry. Appendix B presents
thermodynamic properties of combustion products necessary in the computa-
tion discussed in appendix C. The variation of total temperature with
water-air ratio for both JP-3 fuel and 60-percent-magnesium slurry is
plotted in figure 7(a). With no water injection the slurry gave a cal-
culated total temperature of 4760° R as compared with 3650° R with
JP-3 fuel. The totel temperature with slurry declined to 3720° R at
0.12 water-air ratio, whereas with JP-3 it declined to 2800° R at 0.07
water-air ratio. A decrease in total temperature with lncreasing water-
air ratio may be expected because of the decrease in the oxygen available
to the afterburner and because of a posgible decrease in afterburner
combustion efficiency.

The effect of variation in water-air ratioc upon afterburner cowbus-
tion efficiency at an equivalence ratio of 1.0 for both JP-3 fuel and
60-percent-magnesium slurry is shown in figure 7(b). e method of com-
putling combustion efficlency, defined as the ratio AH G/Qil is discussed
in appendix C. The combustion efficiency of 60-percent-magnesium slurry
remained nearly constent at values exceeding 0.87 to water-air ratios
of 0.12. The JP-3 fuel gave a combustion efficiency of about 0.78 &t
low water-air ratios, declining to 0.56 at 0.07 water-air ratio. .

Air specific impulse. - The propulsive performance of a thermodynamic
duct is frequently expressed as alr specific impulse (total stream momen-
tum per pound of air). The implications and usefulness of this and other
duct momentum relations are explained in reference 10. Appendix C pre-
sents8 the definition of air specific impulse.

Alr specific impulse in a choked burner S; is a measure of the

Jet- thrust-producing capability of a fuel. The effect of water injection
upon Sa over a range of equivalence ratlos for both JP-3 fuel and

60-percent-magnesium slurry is shown in figure 8. Each run is repre-
sented by a datum point with the corresponding afterburner equivalence
ratio indicated by an adjacent number. ILines of constant afterburner
equivalence ratio have been faired among the points. This interpolation
was accomplished by the construction of a smoothed three-dimensional
model of the surface involving the following coordinastes: water-air
ratio, equivalence ratio, and air specific impulse. At an equivalence
ratio of 1.0, JP-3 gave an Sa of 157 seconds with no water injection.

The inJection of water resulted in a rapid drop in Sa beyond a water-

alr ratio of 0.05, reaching 150 seconds a; 0.07 water-air ratio. Slurry
at an equivalence ratio of 1.0 gave an BSg of 177 seconds with no water

injection, increasing to 182 seconds at a water-alr ratio of 0.10.
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Predicted Performance of Turbojet Engines with Combined Water
Injection and Afterburning of JP-3 Fuel or Magnesium Slurry

By use of the total temperatures determined for the small-scale
afterburner, the thrust augmentation resulting from afterburning of
JP-3 fuel or slurry wae computed for engines with and without water
injection. Performance was considered for two engines, one making ldeal
use of injected water and the other utilizing water in an experimentally
determined manner.

Thrust augmentation of a turbojet engine conbining afterburning
with ideal water-injection performance. - A method of water injection
which has been investigated theoretically is the introduction of the
water at the compressor entrance. As the wet mixture passes through
the compressor, the coolant is assumed to vaporize with sufflicient ease
to maintain saturation. If the coolant vaporizes completely before com-
pression is complete, the wet compression is followed by a dry com-
pression.

The sea-level static performance to be expected from the theoretical
engine by such ideal use of water injection with and without afterburning
was computed with the methods and assumptions discussed In appendix D.
The afterburner total temperatures used in meking the computations were
those shown in figure 7 for the small-scale afterburner with JP-3 fuel

or magnesium siurry.

The sea-level static performence of this engine with ideal water
injection is presented in figure 9 as augmented thrust ratio (ratio of
augmented to normsel thrust) against augmented liguid ratio (ratio of
augmented total liquid consumption to normal total liquid consumption).
The afterburner is considered to be operating at an equivelence ratio

of 1.0. The following teble summarizes the results shown in figure 9:
No water injection Water Injection

Augmented | Augmented | Maximum Augmented
thrust liquid augmented liquid
ratio ratio thrust ‘ratio| ratio

No afterburni

(carve G) %] 1.00 1.0 1.29 4.7

Afterburning

with JP-3

(curve B) 1.47 4.0 1.81 6.8

Afterburning

with slurry "

(curve A) 1.75 6.9 2.15 2.8
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The engine without water injection produces 19 percent more thrust with
60-percent-magnesium slurry than with JP-3 fuel. When water injection
is employed, the maximum engine thrust with 60-percent-magnesium slurry
again exceeds that with JP-3 fuel by 19 percent. These high values of
thrust augmentation are achieved at the expense of high total liquid
consumption.

Thrust augmentetion of a turbojet engine combining afterburning
with experimental water-injectlon performance. - The great effectiveness
of injected coolants céntaining water as previously described has not been
obtained in practice. Mixture saturation within the compressor is not
attained. The coolant must be injected in small amounts at stages through
an axisl-flow compressor to avoild damage resulting from centrifugal sepa-
ration of the wet mixture. Such deviation from ideal processes lowers the
thrust sugmentation obtainable from a given quantity of coolant. The
least effective method of introducing the coolant is to injeet it directly
into the engine combustion chambers, since no air-flow increase is
experilenced as is sometimes the case with compressor cooclant injection.

Augmented thrust ratio is shown by curve A of figure 10 for an
actual engine employing a combinstion of compressor interstage injection
and combustion-chamber injection. These data were obtained from a
previous investigation (reference 11). The coolant employed was & mix-
ture of 75 percent water and 25 percent alcohol by weight. About
0.024 pound cooclant per pound air, corresponding to an augmented liquid
ratio of 2.5, was injected at the sixth stage of the compressor, and the
remainder was injected in the center of the engine combustion chanbers.
The probabllity that water alone should give performance comparable to
that obtained from the water~alcohol mixture at sea-level conditions is
indicated in reference 12.

Computed performance is shown by curves B and C (fig. 10) for this
same turbojet engine using water injection in combination with after-
burning of JP-3 fuel and 60-percent-magnesium, respectively. These
curves were computed from the experimental datas of curve A for water-
injection performence together with the small-scale afterburner results
reported herein for an equivalence ratio of 1.0. The methods and assump-
tions of appendix D were used in the calculations. The results are
summarized in the following table: '

No water lanjJection Water Injection
Augmented | Augmented | Maximum Avgmented
thrust liquid augmented liquid
ratio ratio thrust ratio| ratio

No afterburning

Afterburning with

JP-3 (curve B) 1.43 4.0 1.58 7.0

Afterburning with

slurry (curve C) 1.67 6.9 2.00 13.6

m
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Without water injection the englne thrust is 17 percent higher with
60-percent-magnesium slurry then with JP-3 fuel. With water injectionm,
the maximum engine thrust with 60-percent-magnesium slurry is 27 percent
higher than with JP-3 fuel.

Full-scale experimental results, reported in reference 6, are shown
by curve D of figure 10 for an engine using compressor coolant (75 percent
water, 25 percent alcohol) injection and afterburning of JP-3 fuel. An
augmented thrust ratio of 1.52 was experienced at an augmented liquid
ratio of 4, increasing to 1.7 at an augmented liquid ratio of 5.7. _
Although the generael trends are similar, this performence exceeds that of
curve B computed from experimental water-injection date and the small-
scale afterburner date for JP-3 fuel. There are several reasons for the
difference in performance. The engine of curve D employed compressor
injection, whereas the engine of curves A, B, and C mainly employed the
less effective combustlon-chamber injection. The reported combustion
efficlency of the afterburner on the engine of curve D exceeded that of
the small-scale afterburner with JP-3 fuel.

Effect of afterburning with magnesium slurry upon airplane perform-
ance, - Improvements in certain phases of airplane performence may be
expected by the use of afterburning with magnesium slurry. The turbojet-
engine performance data reported herein for combined water injection
and afterburning at sea-level statlic conditions permit the estimation of
reduction in take-off distance due to the use of magnesium slurry.

From augmented thrust ratios shown on curves B and C of figure 10
for a turbojet engine combining afterburning with experimental water-
injection performance, the take-off distance of a fighter-type alrcraft
was computed. It was assumed thet the ratio of normal thrust to alr-
craft weight was 0.33. Take-off characteristics were as follows: drag-
1ift ratio of 0.15, lift coefficient of 1.0, and wing loading of 60 pounds
per square foot. Changes In alrcraft weight needed to incorporate various
augmentation systems were not considered. The following teble presents
take-off distance from dry'.concrete, the ratio

take-off distance with augmented engine
take-off distance with unaugmented engine

and liguid consumption during take-off:

Afterburner | Take-off | Fractlion of | Liquid used
fuel distance | normal duiring tske-
(£t) teke-off offl

distance (1b)
No water None 3381 1.00 44
Injection JP-3 2018 .80 113
Slurry 1680 .50 136
Water None 2245 0.66 267
injection JpP-3 1791 .83 136
Slurry 1362 .40 217

lBa.sed. upon 15,000 pound gross weight at teke-off.
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The replacement of JP-3 by 60-percent-magnesium slurry as an afterburner
fuel may result in shortening take-off distance 17 to 24 percent.

SUMMARY OF RESULTS AND DISCUSSION

The combustion properties of both JP-3 fuel and slurrles containing
60 percent magnesium powder with JP-3 fuel were evaluated in a2 small-
scale afterburner in the presence of large quentities of water wvapor.
From the data thus cbtained, the performance of turbojet engines com-
bining water injectlon and afterburning was estimated. The conclusions
are as follows:

1. In the small-scale afterburner, 60-percent-magnesium slurry
burned stebly to the highest water-air ratio investigated, 0.18, over a
wilde range of equivalence ratios. Combustion with JP-3 fuel was limited
to water-air ratios less than 0.08.

2. The following table shows that total temperatures, combustion
efficiencies, and air specific impulses are improved when magnesium
slurry rather than JP-3 fuel alone is used in the small-scale afterburner
both with and without water vapor. These advantages are at the expense
of higher liquid consumption.

Fuel Water- | Afterburner | Afterburner | Alr specific
air total combustion impulsel
ratio | temperaturell efficiencyl (sec)

(°R)
JP-3 o 3650 0.78 157
.07 2800 .56 150
Slurry4{ O 4760 0.87 177
.12 3720 .87 182

lafterburner equivalence ratio, 1.0.

3. The static sea-level performance of a turbojet engine with com-
bined water injection and afterburning of JP-3 fuel or sliurry was com-
puted by means of total-temperature data obtained on the smalli-scale
afterburner. Two engines were considered, one making ideal use of
injected water and the other utilizing water with experimentally deter-
mined effectiveness. The results are listed for an afterburner equiva-

lence ratio of 1.0:
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Type of Afterburner | No water injection Water injection
water fuel Augmented | Augmented | Maximum Augmented
injection thrust liquid eugmented liquid

ratio ratio thrust ratio| ratioc
Tdeal JP-3 1.47 4.0 1.81 6.8
Slurry 1.75 6.9 2.15 9.8
Experi- JP-3 1.43 4.0 1.58 7.0
mental Slurry 1.67 6.9 2.00 13.6

4. The use of magnesium slurry as an afterburner fuel in place of
JP-3 fuel may shorten the take-off distance of some aircragt 17 to

24 percent.

Lewis Flight Propulsion Leboratory
National Advisory Commlttee for Aeronsutics

Cleveland, Ohio

8952
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APPENDIX A

SYMBOLS

The following symbols are used in the report and appendixes:

area, sq ft

internal drag coefficient of afterburner

specific heat of magnesium oxide, (Btu/(1b)(mole)(°F)

specific heat at constant pressure, (Btu/(I1b)(mole)(OF)

equivalence ratio of afterburner
thrust, 1b
liquid-to-air ratio

stoichiometric fuel-air ratio for afterburner fuel

acceleration due to gravity, 32.17 ft/sec2
total sensible enthalpy, Btu/lb mixture
static sensible enthalpy, Btu/lb mixture
mechanical equivalent of heat, 778 ft-1b/Btu
Mach number

molecular weight

number of moles

total pressure, 1b/sq ft

static pressure, 1b/sq ft

heat entering afterburner in form of fuel, Btu/lb mixture

measured heat loss to afterburner cooling air, Btu/lb mixture

heating value of fuel, Btu/lb fuel

R

13
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R universal ges constant, 1545 £t mol/oR

r welght fraction of megnesium in afterburner fuel )
Sg, glr specific impulse, sec

S; alr specific impulse at M = 1, sec -

T total temperature, °R

t static temperature, °R

v velocity, ft/sec

Vo airplane velocity, ft/sec

W weight flow, 1b/sec

T ratio of specific heats

APp total pressure loss in an afterburner dve to burner and flame-

holder drag and inlet diffuser inefficiency, lb/ sqg It

AP momentum tolal-pressure loss in an afterburner due to burning,
1b/sq ft

1 efficiency

p density of fuel, lb/cu ft -

o (M) stream thrust-correction factor to M =1

Subscripts:

A,B... denotes species of gaseous atoms and molecules present in hot
combustion products

- a air
au augmented
b afterburner fqel _ o
c afterburner cowmbustioo - .
d afterburner-inlet diffuser

e engine exhaust products : : -

89G2|
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oo BOm

ga.seous phase
propane

Jet

afterburner exhsust products
nozzle

total

unaugmented

water

free stream
compressor Inlet
compressor outlet
turbine outlet
afterburner inlet
efterburner outlet

exhaust-nozzle outlet
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APPENDIX B

THERMODYNAMIC PROFERTIES OF AFTERBURNER-INLET MIXTURES
AND PRODUCTS OF COMBUSTION

In order tc reduce the jet-velocity date from the small-scale after-
burner to predicted full-scale-engine performance, certaln thermodynamic
properties of the exhaust products were needed. These properties in-
cluded: mean molecular weight of gaseous products Mg; ratio of
specific heats vt; and sensible enthalpy h. A knowledge of combustion~
product composition at high temperatures, including dissoclation effects,
was necessary first. At assigned elevated temperatures the equilibrium
composition of the combustion products at an equivalence ratio of 1.0
was found by a method adapted from reference 13. A pressure of 2 atmos-
pheres was arbitrarily assigned to the computations. It was assumed
that there were no products of incomplete combustion present ‘The com-
positions of the fuel-air mixtures before combustion were those defined
by the curves of figure 5.

From the product compositions thus determined and tables of thermo-
dynemic properties of the constltuents (reference 14) mean moleculer
weight of gaseous products was computed from the expression

Npmy + Ngmg + + « .
ATA Iy + o
Bg = Wy + Ng ' " - (B1)

The value of specific-heat ratio ¢y was defined as

Nacp,A + Npep,B + . . . + NMgocMg0 (82)
NACP A + NBCP B + o 0 o+ NMgOcMgO - 1.9876(Nt - NMEO)

The sensible enthalpy of products of afterburning was defined as

NAmA + NBH].B + . ¢ o+ NMgomMgo

h =

The sensible enthelpy was also computed for afterburner-inlet mixtures
consisting of liquid fuel at 537° R and products of propane coﬂbustion
with water vapor at 1660° R.

These thermodynemic propertles are presented in figures 11 and 12
at an equlvalence ratlo of 1.0 for JP-3 fuel and 60-percent-magnesium

slurry.

RSN .
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APPENDIX C

REDUCTION OF DATA FROM 6-INCH SMALL-SCALE AFTERBURNER

Afterburner equivalence ratio. - The afterburner eguivalence ratio
E.R. was found as follows:

p Tn
E.R. = . <l - 00840 (Cl)
b, s

where fb,s is 0.1305 for 60-percent-magnesium slurry or 0.0675 for
JP-3 fuel.

Velocity at the afterburner exit mnozzle. - The velocity was computed
from the expression

gF; g Fy
Wy + Wy + Wy, + W, Wy

Vs (c2)

One-dimensional flow with velocity and temperature equilibrium of both
gaseous and solid products was assumed.

Air specific impulse at M = 1. -~ Air specific impulse at Mach num-
ber 1 is defined as ’ '

Sa = %—;-(PBAQ + ‘-‘:%r-s-) P(Mg) (c3)

where

(P [+ § g

CP(M8)= l+-Y-Mg

The function ¢(Mg) reduces Sy at any Mach number to Sg at M = 1.
The stream thrust-correction factor CP(MB) may be found for any Mg

end v as the reciprocal of F/F* in tables 30 through 35 of refer-
ence 15. For the data reported herein a ratio of specific heats ¥ of
1.3 has been arbitrarily used in determining @(Mg).
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Afterburner total temperature. - The weight of gaseous products for
the slurry runs was

40,32
W8=Wa+wh+wb+ww—'-—-—z4“52er (ce)

- 8962

and for the JP-3 fuel runs
Wg=Wa+Wh+Wb+WW=Wt

The exhaust-nozzle-Jjet velocities at an equlvalence ratlo of 1.0
were found by a graphical interpolation among the date shown in table ITI.
Stetic temperature was then determined as

- PghgVally
tg = —Ta'w—g_ (cs)

The corresponding static enthalpy was read from figure 11(b)} or 12(b).
The total enthalpy per pound of exhaust productse was then

2
Vs

Hg = bg + 357 + O (ce)

The total enthalpy was thus corrected for the measured heat loss Qr to -
the afterburner cooling air. By the use of Hg and figure 11(b) or

12(b) total temperature was found.

Afterburner combustion efficiency. - Afterburner combustion effi-
clency is defined as

g : _
n = ]6___ Wt(HB‘HG) (c7)
¢ Q4 Wy, :

where @ = 13,966 Btu/lb of 60-percent-magnesium slurry or 18,800 Btu/lb
of JP-3 fuel. The afterburner-inlet-mixture enthalpy Hg was found
from figure 11(a) or 12(a).

wONPEDEINTE TAL
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APPENDIX D

COMPUTATION OF THRUST AUGMENTATION FOR TURBOJET ENRGINES

The ratio of augmented to normal net thrust is

Fau _ Fa.u,,j = Wa.,au Vo

Fy  Tu.3 - W

(p1)
u,J a,u Vo

For the analysis presented herein, the airplene speed Vg 1s zero or
nearly zero; hence, the Jjet thrust ratio Fau, J/Fu, 3 1s equal to the
net thrust ratio Fg,/Fy.

Thrust of engines with water injection alone. - The Jet thrust of
the engine for an unchoked exhaust nozzle 18 (reference 16)

Te-1 -
RT Pa\ Te
Fy = -t 2gn, —e 5 l1-(0 (D2)
3 Ye - 1 oy Py
and for a choked exhsust nozzle is
W. T, RT
FJ=_t. 2g_e_51+_l_ 1.2 (D3)
g Te + 1 mg Te Pg
vhere
Po 1
— = D4
PB Te ( )

Ps 1 (Te - l) 1 Te-l
B |T \Te+ 1/,
Both equations (D2) and (D3) require that the ratio Pg/pg at the tur-

bine outlet be known. For the engine without afterburner, no drag or
diffusion pressure losses were assumed between the turbine discharge
and the exhaust-nozzle opening. Diagrams of both engine types are shown
in figure 13.
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The variaetion of PS/PO with water-alr ratio for the engine employ-

ing ideal water injection and for the engine meking experimentally deter-
mined use of water injection is shown In figure 14. For the theoretical
engine, P5/p0 was computed by the method of reference 16, with the

following assumptions: The air inducted 1nto the compressor had a rela-
tive humidity of 0.50 and NACA standard sea~level pressure and tempera-

3 3
ture; the compressor adlabatic efficilency was 0.8 -|AX 1’ where [ax]l

was the quantity of water vaporized in the compressor; the work output
per pound of mixture was 85.3 Btu; total pressure loss within the com-
bustion chambers was 3 percent; turbine adiabatic efficiency was 85 per-
cent; and turbine-inlet temperature was 2000° R.

The engine with experimental water-injection performance operated
at a turbine-outlet temperature Tg of 1725° R; the engine with ideal

water injection, at sbout 1700° R. Normal compressor pressure ratio for
both engines was 4.6,

Thrust of engine with combined water injection and afterburning. -
The jet thrust of the engine for the unchoked exhsust nozzle was

Tk“l
P —EP- Tk RTB 1- Po T (D5)
Jd g 28Ny Y - Yo - 1 ms P,

For the choked nozzle, with or without solid exhaust products

W T RT D W,
_t k_—8 1 LH.0 . MegO
FJ = 28 T +1m [l * Tx < Ps) <l Wy )] (pe)

where

Po 1
i (D7)

P7 Tk-l lTk-l
Po l'rk+1 Ty

The same characteristics were assumed for the afterburner of both
engines. These characteristics were as follows: The afterburner-inlet

fusion procesg in the afterburner-inlet diffuser was 0.8; the afterburner
drag coefficient was 1.0; and the nozzle adiabatic efficiency was 0.95.

0952
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Afterburner total temperatures used were those determined for the
small-scale afterburner as shown in figure 7. The afterburner=inlet
temperatures were lower in the smsll-scale afterburner (1660° R) than
in the full-scale engines (1700° and 1725° R). The error introduced by
the use of these temperatures without correction in snalyzing the per-
formance of the full.scale engine was small, however.

The pressure ratio P—,/po at the afterburner exhaust nozzle was

less than the ratio Pg/pg at the turbine outlet, shown in figure 14,
because of losses. These losseg depended upon afterburner temperature
rise TS/TSJ drag Cp, inlet diffuser efficlency 74, and inlet velocity
factor Vs 4/16007T5. They have been separated into two groups, APg/Psg
and /_\.Pm/Ps s, and were found by the use of figure 15, redravn from refer-
ence 17. The pressure ratio P7/p0 across the afterburner exhaust
nozzle was then

Py _Bs APp AP
Tx 5|y (L,_m (D8)
Po Po Ps  Fg
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TABLE I - SPECIFICATIONS AND ANALYSIS OF REFERENCE FUEL

SNEGA

Specifications | Analysis
MIT.-F-5624 MIL-F-5624
NACA 51-21
A.8.T.M. distillation

D86-46, OF

Initial boiling point | -----—-—mwe--- 12

Percent evaporated

5 | emeecece—a—a—- 141
10 0000 | eemeemee—eeaa 164
20 | eemmmmmmmeeeeo 216
30 00000 | eeeeemenea—n-- 266
40 | memmmmmem——e- 304
5 0000 ] ememmmmaceae- 340
860 | emmmmem—e———a 374
70 | eeemmemaee- 406
80 | =eemmm—e—eea 433
20 400 (min.) 464

Final boiling point 600 (max.) 522

Residue, (percent) 1.5 (max.) 1.2

Toss, (percent) 1.5 (max.) 0.8
Aromatics, (percent by

volume) A.S.T.M.

D875-46 T 25 (max.) <5
Specific gravity 0.728 (min.) 0.753
Reid vapor pressure,

(1b/sq in.) 5-7 4.8
Hydrogen-carbon ratio | =—=e-ecmmcwc---- 0.174
Net heat of combustion,

(Btu/1b) 18,400 (min.) 18,841

TABLE IT - CHARACTERISTICS OF

MAGNESIUM POWDER

Type of magnesium | Uncombined | Particle size distribution
povder Ta§§§:i¥?é Total number | Particle size
P of particles (microns)
(percent)

0-1/2 25-40

Atomized 99 1-2 6-25

3-5 3-6

Balance 0-3

a8Mgnufacturer's estimate.
ADNBEREAESE T
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Figure 7. - Effect of water-air ratio on smasll-scale sfter-
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equivalence raetioc, 1.0; afterburner inlet velocity,
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Jet engine combining afterburning with ideal water-
injection performsnce. Afterburrner equivalence ratio,
1.0.
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Figure 10. ~ Static sea-level thrust augmentation of turbojet engine
combining sfterburning with experimental water-injection perform-

ance.
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Figure 15. - Schematic diagram of turbojet engine showing stations referred to in
analysis of appendix D.
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Figure 14. ~ Effect of water injJection on turbine-outlet
pressure ratio P5/po of turbojet engines. Normal

compressor pressure ratlo, 4.6.
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